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Abstract

Large‐scale genome‐wide analyses scans on massive numbers of various cases

and controls are archived in the genetic databases that are publically available,

for example, the Database of Genotypes and Phenotypes (https://www.ncbi.

nlm.nih.gov/gap/). These databases offer unprecscendented opportunity to

study the genetic effects. Yet, the set of nongenetic variables in these databases

is often brief. From the statistical literature, we know that omitting a

continuous variable from a logistic regression model can result in biased

estimates of odds ratios (OR), even when the omitted and the included variables

are independent. We are interested in assessing what information is needed to

recover the bias in the OR estimate of genotype due to omitting a continuous

variable in settings when the actual values of the omitted variable are not

available. We derive two estimating procedures that can recover the degree of

bias based on a conditional density of the omitted variable given the disease

status and the genotype or the known distribution of the omitted variable and

frequency of the disease in the population. Importantly, our derivations show

that omitting a continuous variable can result in either under‐ or over‐
estimation of the genetic effects. We performed extensive simulation studies to

examine bias, variability, false‐positive rate, and power in the model that omits

a continuous variable. We show the application to two genome‐wide studies of

Alzheimer's disease.
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1 | INTRODUCTION

Recent advances in genotyping technology generated a
variety of massive datasets that are archived in publicly
available databases, including the Database of Genotypes
and Phenotypes https://www.ncbi.nlm.nih.gov/gap/, the
Cancer Genome Athlas https://portal.gdc.cancer.gov/,
the UK Biobank https://www.ukbiobank.ac.uk/. These
databases provide valuable information that can be
used to improve our understanding of the genetic

predisposition to complex diseases, such as cancer,
diabetes, neurodegenerative disease. Such analyses of
association can be designed to answer various questions,
one of which is to identify the genetic variants and rank
them according to the strength of the evidence for an
association with the complex diseases. As a result, we can
obtain valuable clues to the underlying aeteologic
mechanisms of complex diseases. A commonly overseen
complication is that omitting a variable from a logistic
regression model can substantially bias the genetic effect
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estimates. We are interested in identifying conditions
needed to recover bias in settings when the actual
values of the omitted variable are not available to the
researcher.

As discussed by many authors, including Gail,
Wieand, and Piantadosi (1984), Neuhaus and Jewell
(1996), Hauck, Neuhaus, Kalbfleisch, and Anderson
(1991), Zeger, Liang, and Albert (1988), omitting vari-
ables associated with the disease can bias the odds ratio
(OR) estimates. This is because the OR estimates reflect
both the effect size and variability that is not explained by
the model. Gail et al. (1984), Neuhaus and Jewell (1996),
Zeger et al (1988) showed how the magnitude of bias in
the estimate is a function of the true OR of the omitted
variable in various settings. The correct adjusted OR
estimate of the omitted variable, however, is rarely
available because such an estimate would be based on a
model that includes both the genetic and nongenetic
variables. Hence we are interested in exploring what
information available in the literature can recover bias in
the estimates. We are also interested in assessing what
information is needed to determine the directionality of
the bias.

The setting considered in this paper is unique because
we deal with three types of misspecifications at the same
time. First, the data are collected using a retrospective
design where the cases and controls are sampled
independently from their respective populations, while
the data are analyzed in a prospective logistic regression
model. As shown in the seminal work by Prentice and
Pyke (2011), we know that this aspect of misspecification
does not result in based OR estimates because the OR can
be estimated consistently from the retrospective
likelihood‐based methods. Secondly, the model is mis-
specified because a variable is omitted from the model.
The second misspecification leads to the third, that is if
the true model is logistic, the model that omits a variable
might not be logistic.

The setting considered here is also unique in that the
estimated effect size of a genetic variant is usually
small to moderate, ranging between −log(1.5) and
log(1.5) (Park et al., 2012). A few exceptions, however,
have been reported in the literature. For example, in the
context of Alzheimer's disease, the ApoE genotype is
estimated to have an OR of 3.1 for heterozygous ε4
genotype and 34.3 for homozygous ε4 genotype (Kukull
et al., 1979).

Our paper is organized as follows. We first perform a
series of simulation studies to assess the bias due to
omitting a variable empirically. The simulations are
described in the Assessment of the Bias Due to Omitting
a Variable (Section 2.1). Next, in Section 2.2 we derive the
relationships between parameters of the reduced model

where the variable is omitted and the parameters in the
full model where the variable is included. We further
conduct simulation studies described in Section 2.3 to
assess how various pieces of information can contribute
to the recovery of the bias. We show the application to
the studies of Alzheimer's disease. And we conclude the
paper by a brief discussion.

2 | MATERIALS AND METHODS

2.1 | Assessment of the bias due to
omitting a variable

We first perform a series of simulation studies to assess
potential bias, variance, mean squared error (MSE), false
discovery rate (FDR), and power reduction when omit-
ting an important continuous variable, that is the variable
associated with the disease status. We simulate the
omitted variable O and the genotype G to be independent
in the population.

2.1.1 | Setting 1

We first examine models with one genetic variant. We
simulate the genetic variant from Bernoulli(0.1) and an
omitted variable O from Normal σ(0, ).2 We set σ = 1, 2

and next simulate the disease status according to the full
disease risk model

pr D d G O β β G β Ologit{ ( = | , )} = + × + × ,B G0 0 (1)

where we let β0 =−1, −5; βG= log(1), log(1.5), log(2), log
(2.5), log(3), log(5), log(8) and β0 = log(1), log(1.5), log(2),
log(3), log(5), log(8), across various settings.

We generate 5,000 samples of 3,000/10,000 cases and
3,000/10,000 controls using a retrospective/case‐control
design.

We next estimate the parameters based on the reduced
(and hence misspecified) logistic regression model

pr D d G γ γ Glog it{ ( = | )} = + × .Γ 0 G (2)

Shown in Table S1 are disease prevalence rate in the
population, the difference γ β( ˆ − )G G that we define to be
bias, variance, MSE, and FDR when βG= 0.

The estimates in this setting are nearly unbiased
with FDR being close to its nominal level. Shown
in Table 1 is the setting when β = log (1.5)G . Here
biases become more pronounced, leading to a reduced
power for detecting an effect. For example, when
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β = log (3) = 1.0986,O β σ= −1, = 2,0 the difference
γ β( ˆ − )G G is 0.18, while the power to detect the genetic
effect is 0.76. The frequency of the disease in the
population is 0.37. Shown in Table 2 and Table S2 are

the settings when βG = log(2), log(2.5), log(3), log(5),
log(8). Biases increase with the coefficient βG, how-
ever, because of its direction, the bias does not reduce
power to detect the effect in this setting. As illustrated

TABLE 1 Bias (γ̂G − βG), variance and mean square error (MSE)
of genetic effect estimates obtain using reduced model (2) when the
data are simulated using full model (1)

(β0, σ) prB (D= 1) Bias Variance MSE Power

βO= log(1)

(−1,1) 0.28 0.008 0.007 0.007 1

(−1,2) 0.28 0.008 0.007 0.007 1

(−5,1) 0.007 −0.03 0.005 0.006 1

(−5,2) 0.007 −0.03 0.005 0.006 1

βO= log(1.5) = 0.4055

(−1,1) 0.28 −0.009 0.007 0.007 1

(−1,2) 0.30 −0.05 0.007 0.01 1

(−5,1) 0.008 −0.01 0.006 0.006 1

(−5,2) 0.01 −0.03 0.006 0.006 1

βO= log(2) = 0.6931

(−1,1) 0.30 −0.03 0.008 0.009 0.99

(−1,2) 0.33 −0.10 0.007 0.02 0.95

(−5,1) 0.02 −0.03 0.006 0.007 1

(−5,2) 0.03 −0.03 0.006 0.007 1

βO= log(2.5) = 0.9163

(−1,1) 0.31 −0.06 0.007 0.01 0.98

(−1,2) 0.35 −0.15 0.008 0.03 0.86

(−5,1) 0.01 −0.02 0.006 0.006 1

(−5,2) 0.03 −0.06 0.006 0.01 0.99

βO= log(3) = 1.0986

(−1,1) 0.32 −0.07 0.007 0.01 0.98

(−1,2) 0.37 −0.18 0.007 0.04 0.76

(−5,1) 0.01 −0.01 0.006 0.006 1

(−5,2) 0.04 −0.11 0.006 0.02 0.96

βO= log(5) = 1.6094

(−1,1) 0.34 −0.13 0.007 0.02 0.92

(−1,2) 0.40 −0.23 0.007 0.06 0.54

(−5,1) 0.02 −0.04 0.006 0.007 1

(−5,2) 0.09 −0.19 0.007 0.04 0.73

βO= log(8) = 2.0794

(−1,1) 0.36 −0.17 0.007 0.03 0.80

(−1,2) 0.42 −0.27 0.007 0.08 0.37

(−5,1) 0.04 −0.10 0.007 0.02 0.97

(−5,2) 0.14 −0.25 0.007 0.07 0.48

Note: Shown is also probability of the disease in the population, that is prB
(D=1), and false discovery rate (FDR). The genotype is simulated to be
Bernoulli(0.1), the omitted variable is simulated from Normal(0, σ2). We
simulated the disease status from model (1) with parameters β = −1, −5;0

β β= log (1.5), = log (1), log (1.5), log (2), log (2.5), log (3), log (5),G O

log (8). The results are based on 5,000 datasets of 3,000 cases and 3,000
controls.

TABLE 2 Bias (γ̂G − βG), variance and mean square error (MSE)
of genetic effect estimates obtain using reduced model (2) when the
data are simulated using full model (1)

(β0, σ) prB (D= 1) Bias Variance RMSE Power

βO = log(1) = 0

(−1,1) 0.32 −0.008 0.01 0.01 1

(−1,2) 0.32 −0.008 0.01 0.01 1

(−5,1) 0.01 −0.004 0.005 0.005 1

(−5,2) 0.01 −0.004 0.005 0.005 1

βO = log(1.5) = 0.4055

(−1,1) 0.32 −0.07 0.01 0.02 1

(−1,2) 0.34 −0.25 0.01 0.07 1

(−5,1) 0.01 −0.02 0.005 0.005 1

(−5,2) 0.02 −0.06 0.005 0.009 1

βO = log(2) = 0.6931

(−1,1) 0.33 −0.20 0.01 0.05 1

(−1,2) 0.36 −0.53 0.001 0.29 1

(−5,1) 0.01 −0.05 0.005 0.007 1

(−5,2) 0.02 −0.23 0.005 0.06 1

βO = log(2.5) = 0.9163

(−1,1) 0.34 −0.31 0.01 0.10 1

(−1,2) 0.38 −0.74 0.009 0.56 1

(−5,1) 0.016 −0.07 0.005 0.01 1

(−5,2) 0.04 −0.45 0.005 0.21 1

βO = log(3) = 1.0986

(−1,1) 0.35 −0.40 0.01 0.17 1

(−1,2) 0.39 −0.87 0.01 0.77 1

(−5,1) 0.019 −0.12 0.005 0.02 1

(−5,2) 0.05 −0.64 0.006 0.41 1

βO = log(5) = 1.6094

(−1,1) 0.37 −0.64 0.009 0.42 1

(−1,2) 0.41 −1.17 0.008 1.37 1

(−5,1) 0.03 −0.34 0.005 0.12 1

(−5,2) 0.10 −1.04 0.006 1.09 1

βO = log(8) = 2.0794

(−1,1) 0.39 −0.83 0.009 0.70 1

(−1,2) 0.43 −1.34 0.008 1.81 1

(−5,1) 0.05 −0.59 0.006 0.34 1

(−5,2) 0.15 −1.28 0.006 1.63 1

Note: Shown is also probability of the disease in the population, that is prB
(D=1), and false discovery rate (FDR). The genotype is simulated to be
Bernoulli(0.1), the omitted variable is simulated from Normal(0, σ2). We
simulated the disease status from model (1) with parameters β0 =− 1, − 5;
βG = log(8), βO = log(1), log(1.5), log(2), log(2.5), log(3), log(5), log(8). The
results are based on 5,000 datasets of 3,000 cases and 3,000 controls.
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in Table S3 the biases noted in samples with 3,000
cases and 3,000 controls persist in samples with 10,000
cases and 10,000 controls.

2.1.2 | Setting 2

We now examine a setting with many genetic variables
and one omitted environmental variable. The goal of this
simulation is to see if the relative order of the genetic
variables is estimated correctly. We simulate G1 … GM/2

from Bernoulli(0.1) and GM/2+1 … GM from Bernoulli
(0.25), and O from Normal(0, σ2), where σ= 1, 2.

Moreover, we simulate the disease status according to
the risk model:

⋯pr D G O β β G β

G β O

log it{ ( = 1| , )} = + × + +

× + × ,

B G G

M

0 1

0

M1

where we let β0 =−1;−5; M β μ σ= 10; ~Normal( , ),G G G
2

with μG = log(1), log(2), log(3), log(5), log(8);
σ = log(1.5)G
2 and βO= log(1), log(1.5), log(2), log(2.5),

log(3), log(5), log(8). We next estimate the parameters
based on the misspecified logistic regression model

⋯pr D d G γ γ G γ Glog it{ ( = | )} = + × + + × .G G MΓ 0 1 M1

We would like to assess if the order of the genetic effect
estimates is preserved. In many settings, it is more
meaningful to estimate the relative order of the coefficients
correctly, rather than the actual coefficients themselves. We
define the order of the genetic effect by (a) absolute value of
the coefficient; (b) p‐value for the coefficient. The former is
based just on the value of the coefficient estimate, while the
latter is based on the p‐value.

Shown in Table 3 and Table S4 are the results based
on 5,000 samples of 3,000 cases and 3,000 controls.
Shown in Table 3, the proportions of the genetic variants
for which the ranks are preserved. As illustrated in Table
S4, the proportions of the genetic variants for which the
ranks are the same are very close to 1 when βO is small.

In summary, we conclude that in the context of the
genetic association studies the issue of bias due to omitting
variables needs to receive more attention because it can be
pronounced, in either direction and can distort false positive
rate and power to detect an effect.

2.2 | Estimates of reduced versus full
models

Suppose we obtained estimates of the genetic effects from
a case‐control study that omits a variable, that is, the

coefficients in the reduced model (2). The risk of the
disease is, however, determined by both the genetic
effects G and the omitted variable O, that is the full
model (1). We note that

pr D G O

pr D G O

f O G D pr D G

f O G D pr D G

( = 1 | , )

( = 0 | , )
=

( | , = 1) × ( = 1 | )

( | , = 0) × ( = 0 | )
. (3)

Hence

⎧⎨⎩
⎫⎬⎭

pr D G g β β G β O

f O D G g

f O D G g

log it{ ( = 1| = )} = + × + ×

+ log
( | = 0, = )

( | = 1, = )
.

G OΓ 0

(4)

TABLE 3 Proportions of genetic variants that received the same
rank based on the full and reduced genetic models across all
variants (ALL), top 10% and top 20%

(β0, σ)
prB
(D= d)

OR̂Ranks based on
Ranks based on
p‐values

ALL
TOP
10%

TOP
20% ALL

TOP
10%

TOP
20%

μG= log(1)

(−1,1) 0.33 0.89 1 0.99 0.74 0.89 0.89

(−1,2) 0.37 0.77 0.98 0.93 0.58 0.81 0.75

(−5,1) 0.01 0.89 1 0.99 0.75 0.89 0.87

(−5,2) 0.05 0.79 0.98 0.95 0.57 0.69 0.71

μG= log(2) = 0.693

(−1,1) 0.56 0.84 0.87 0.9 0.85 0.74 0.79

(−1,2) 0.55 0.71 0.73 0.77 0.70 0.53 0.61

(−5,1) 0.07 0.86 0.87 0.90 0.86 0.75 0.80

(−5,2) 0.12 0.74 0.73 0.79 0.73 0.53 0.62

μG= log(3) = 1.099

(−1,1) 0.66 0.82 0.85 0.88 0.87 0.92 0.95

(−1,2) 0.63 0.70 0.73 0.77 0.76 0.74 0.83

(−5,1) 0.13 0.85 0.84 0.88 0.92 0.77 0.88

(−5,2) 0.18 0.73 0.73 0.77 0.80 0.62 0.79

μG= log(5) = 1.609

(−1,1) 0.75 0.81 0.83 0.87 0.84 0.91 0.81

(−1,2) 0.71 0.69 0.71 0.76 0.72 0.84 0.74

(−5,1) 0.24 0.84 0.86 0.89 0.91 0.94 0.96

(−5,2) 0.28 0.71 0.72 0.77 0.80 0.85 0.88

μG= log(8) = 2.079

(−1,1) 0.79 0.79 0.79 0.84 0.86 0.87 0.88

(−1,2) 0.76 0.67 0.66 0.72 0.74 0.78 0.68

(−5,1) 0.35 0.83 0.86 0.89 0.88 0.96 0.88

(−5,2) 0.37 0.71 0.71 0.77 0.77 0.89 0.77

Note: We simulated 5,000 datasets with 3,000 cases and 3,000 controls. We
simulated 10 genetic variants from Bernoulli(0.1) and disease status from the full
model with coefficients βO= log(3) and μG= log(1), log(2), log(3), log(5), log(8).
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If the ratio f O | D G g

f O | D G g

( = 0, = )

( = 1, = )
does not depend on g, that is

a constant of g, then the estimate of γG is consistent as the
estimate of βG. Hence if the omitted variable and the
genotype are independent conditionally on the disease
status D, then the reduced model yields consistent
estimates of the genetic effects.

Bias recovery from [O|D= d, G= g] Interestingly,
when [O|D= d, G= g] =Normal (μ0 + μg× g+ μd × d, σ2),
we derive that

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

pr D G g β β G β O

μ

σ
O

μ

σ
μ μ g

μ

σ

logit{ ( = 1 | = )} = + × + ×

− × + × + × +
2 ×

.

G O

d d
g

d

Γ 0

2 2 0

2

2

(5)

By Equation (5), we can derive β =O

μ

σ
d
2 and

γ β= +G G

μ μ

σ

d g

2 . Therefore, the difference between γG and
βG is positive if μd× μg> 0, while the difference between
γG and βG is negative if μd× μg< 0. When the disease D is
conditionally independent of the omitted variable O given
genotype G, that is, βO= 0, or equivalently, μd= 0, then
estimates of γG is also a consistent estimate of βG. It is
worth mentioning that in this setting we do not require
independence between G and O.

Bias recovery from [O] and pr(D= 1) When the
auxiliary information of the omitted variable O is available
in the literature and the rate of disease is known, we show
that estimates of β0, βG, and βO can be derived by solving a
system of estimating equations. Here we assume that the
omitted variable O follows a normal distribution Normal
(0, σ2) and G follows the Bernoulli distribution; moreover,
we assume that O and G are independent.

Based on the true model (1) and the fact that the rate
of disease in the population, that is pr (D= 1), is known,
we can obtain

⎛
⎝⎜

⎞
⎠⎟E

e

e
pr D

1 +
= ( = 1).

β β G β O

β β G β O

+ × + ×

+ × + ×

G O

G O

0

0

(6)

Suppose the estimated effect of the omitted variable O
in the following reduced model:

pr D d O α α Ologit{ ( = | )} = + × .OA 0 (7)

has been reported in the literature. Under the full model
(7), α0 and αO are the solutions to the expected score
equations and thus we can derive

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭E O
e

e

e

e1 +
−
1 +

= 0.
β β G β O

β β G β O

α α O

α α O

+ × + ×

+ × + ×

+ ×

+ ×

G O

G O

O

O

0

0

0

0
(8)

In a similar way, under the logistic regression model
(2), γ0 and γG are the solutions to the expected score
equations and thus we can derive

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭E G
e

e

e

e1 +
−
1 +

= 0.
β β G β O

β β G β O

G

G

+ × + ×

+ × + ×

γ +γ ×

γ +γ ×

G O

G O

G

G

0

0

0

0
(9)

Since α0, αO, and pr(D=1) are known from
the literature, we can calculate σ by solving

∫ e d o pr D= ( = 1).
e

e π1 +

1

2

α αO o

α αO o

o

σ

0+ ×

0+ ×

− 2

2 2 Based on the observed
samples of G and D, we can derive consistent estimates for
γG and pr (G=1) and then an unbiased estimate for γ0 can
be obtained by solving ( )E pr D= ( = 1).

e

e1 +

G G

G G

γ0+γ ×

γ0+γ × Apply-

ing numerical approximation to (6), (8), and (9), we can
derive three estimating equations that only involve three
unknown parameters β0, βG, and βO. Consequently, we can
derive estimates for β0, βG, and βO by solving the three
estimating equations.

2.3 | Simulation studies

The goal of the simulation studies is to assess bias in the
estimates and the derivation (5) and the system of
Equations (6), (8) and (9). We simulate the genetic
variable G from Bernoulli(0.1).

2.3.1 | Setting 3

We are first interested to assess the Equation (5). Hence
we simulate genotype from Bernoulli(0.1), then assume
μ0 = 0, μg= log(1.5), μd=−log(1.5), log(1), log(1.5),
σ2 = 1, β0 =−1, −3.5, βG=−log(2.5),−log(1.5), log(1.5),
log(2.5) and β =O

μ

σ
d
2 . Next we generate the disease status

according to model (4) for 5,000 datasets with 3,000 cases
and 3,000 controls. Shown in Table 4 and Table S5 are
biases estimated based on (5), empirical bias, variance,
MSE, and power. The results suggest that the empirical
biases are similar to the biases obtained through (5).

2.3.2 | Setting 4

To evaluate the robustness of the proposed method when the
model (6) is misspecified, we consider adding a quadratic
term η× g2, where the genetic variant is generated from
Bernoulli(0.1) and the omitted variable is generated from
Normal(0, 1). We simulated 5,000 datasets with 3,000 cases
and 3,000 controls. Moreover, we let μ μ= 0, =g0

μ β β β= log(1.5), = log(2.5), = , = −1, −3.5d G O

μ

σ 0
d
2 and
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η=−log(2.5), −log(1.5), log(1.5), log(2.5). As shown in
Table 6, the estimates are substantially biased, hence the
derived approximation is not robust to this degree of
misspecification.

2.3.3 | Setting 5

We now assess the solution according to the system of
Equations (6), (8), and (9). We simulate the genetic
variant from Bernoulli(0.1) and the omitted variable from
Normal(0, 1). And next we generate the disease status
according to model (1) with coefficients β0 =−1, −5;
βG= log(2.5), log(3), log(5), log(8), βO= log(5), log(8) for
5,000 datasets with 3,000 cases and 3,000 controls.

Results shown in Table 5 demonstrate that the numerical
solution to the system of Equations (6), (8), and (9) is
nearly unbiased.

2.3.4 | Setting 6

To evaluate robustness of the system of Equations (6), (8),
and (9) to misspecification of the risk model, we simulate
the data by adding an interaction term η ×G×O in
model (1), while we recover the bias based on the system
of Equations (6), (8), and (9). We generate the genetic
variant from Bernoulli(0.1) and the omitted variable from
Normal(0, 1). Moreover, we let β0 =−1, −5, βO= βG= log
(8), and η=−log(3), −log(1.5), log(1.5), log(3). We

TABLE 4 Bias approximation obtained using (5), that is
μ μ

σ

d g

2
, rate of the disease in the population prB (D= d), bias, variance, and mean

squared error (MSE) of the estimates obtained from the reduced model

βG μd
μ μ

σ

d g

2
prB (D= 1) Bias Variance MSE Power

β0 =−3.5

−log(2.5) −log (1.5) −0.16 0.03 −0.19 0.003 0.04 1

−log(2.5) log (1) 0 0.03 0.01 0.003 0.003 1

−log(2.5) log (1.5) 0.16 0.03 0.17 0.003 0.03 1

log(2.5) −log (1.5) −0.16 0.04 −0.16 0.002 0.03 1

log(2.5) log (1) 0 0.03 0.01 0.002 0.002 1

log(2.5) log (1.5) 0.16 0.04 0.17 0.002 0.03 1

β0 =−1

−log(2.5) −log (1.5) −0.16 0.27 −0.17 0.003 0.03 1

−log(2.5) log (1) 0 0.25 0.01 0.003 0.003 1

−log(2.5) log (1.5) 0.16 0.27 0.18 0.003 0.03 1

log(2.5) −log (1.5) −0.16 0.30 −0.16 0.002 0.03 1

log(2.5) log (1) 0 0.29 0.002 0.002 0.002 1

log(2.5) log (1.5) 0.16 0.31 0.17 0.002 0.03 1

β0 =−3.5

−log(1.5) −log (1.5) −0.16 0.03 −0.13 0.002 0.02 1

−log(1.5) log (1) 0 0.03 0.02 0.002 0.003 1

−log(1.5) log (1.5) 0.16 0.03 0.18 0.002 0.04 1

log(1.5) −log (1.5) −0.16 0.03 −0.15 0.002 0.02 1

log(1.5) log (1) 0 0.03 0.01 0.002 0.002 1

log(1.5) log (1.5) 0.16 0.03 0.17 0.002 0.03 1

β0 =−1

−log(1.5) −log (1.5) −0.16 0.27 −0.17 0.002 0.03 1

−log(1.5) log (1) 0 0.26 0.01 0.002 0.003 1

−log(1.5) log (1.5) 0.16 0.28 0.18 0.002 0.03 1

log(1.5) −log (1.5) −0.16 0.29 −0.17 0.002 0.03 1

log(1.5) log (1) 0 0.28 0.005 0.002 0.002 1

log(1.5) log (1.5) 0.16 0.30 0.17 0.002 0.031 1

Note: We simulated 5,000 datasets with 3,000 cases and 3,000 controls. We simulated genotype from Bernoulli(0.1), then assumed μ0 = 0, μg = log(1.5),
μd = − log(1.5), log(1.5), σ2 = 1, β0 = − 1, −3.5, βG= − log(2.5), − log(1.5), log(1.5), log(2.5).
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simulated 5,000 datasets with 3,000 cases and 3,000
controls. Results shown in Table 7 illustrate the recovery
of bias is robust to this misspecification when the disease is
common and when the effect size of the interaction G×O is
smaller.

2.3.5 | Setting 7

We also examine the robustness of the recovery through
the system of Equations (6), (8), and (9) in the setting
where G and O are simulated to be correlated, but the
analyses assume independence. We generated G from
Bernoulli(0.1) and O from Normal (c ×G,1), where
c= 0.1, 0.25, 0.5, 1. We generated the disease status the
full model with β0 =−1, −5 and βO= βG= log(8). We
simulated 5,000 datasets with 3,000 cases and 3,000
controls. As shown in Table 8, the recovery of bias is
robust to smaller degrees of correlation and smaller effect
sizes.

2.4 | Alzheimer's disease study

We are interested to assess what happens to the genetic
effect estimates when a continuous variable is omitted
from the model, that is how well (5) informs bias and if
the system of Equations (6), (8), and (9) is capable to
restore the genetic estimates. We hence consider two
datasets. The Alzheimer's Disease Neuroimaging Initia-
tive (ADNI) data set includes more extensive evaluations
on a smaller subset of cases and controls. Next, we
consider a larger data set generated by the Alzheimer's
Disease Genetics Consortium (ADGC) where only a brief
set of nongenetic variables is available on a large number
of cases and controls. We hence assess how knowledge
from the literature or from the ADNI data can be applied
to inform how the genetic effect estimates obtained using
ADGC change with the omission of continuous variables.

2.4.1 | Alzheimer's disease
neuroimaging initiative

The set consists of 423 cases and 192 controls. We
mapped the genetic variants to a set serving amyloid and
tau proteins that are relevant to AD pathophysiology
based on the Genecards database (https://www.
genecards.org/). After preprocessing, the set contains
2,438 SNPs. The average (SD) age of cases is 74.29 (7.4),
and 75.41 (4.91) in controls, p= .058. A total of 262
(61.9%) of cases are ApoE ε4 carriers and 49 (25.5%) of
controls are ApoE ε4 carriers, p< .001. Table S7A–S7M
further describes the sets of cases and controls and Web‐
based Supporting Information Materials Section B
provides extended details on the analyses of the ADNI
data set.

To assess what happens to the genetic effect estimates
when a continuous variable is omitted from the model,
we consider several possible models and the logistic
regression results, including coefficient estimates (log
(OR)), standard errors (SE) and p‐values are reported in
Table S8. We first consider a full Model 1 with age, sex,
education, ApoE ε4 status, MMSE and a reduced model
that omits MMSE (model 1A) and that omits ApoE ε4
status (model 1B). We next considered a full model 2
where we added ratio of hippocampus volume to whole‐
brain volume to model 1 with the corresponding reduced
model that omits the ratio of brain volumes. We observed
that the difference in log(OR) estimates between the
reduced and full models were on the order of ≥1*SE. For
example, log(OR) for ApoE ε4 status changed from 1.27
(SE= 0.25) to 1.62 (SE= 0.20) in full model 1 versus
reduced model 1A; and from 1.005 (SE= 0.268) to 1.27
(SE= 0.25) in the full model 2 versus reduced model 2A.

TABLE 5 Bias, variance, and mean squared error (MSE) for the
genetic effect estimates corrected based on the system of Equations
(6), (8), and (9)

(β0, βO) prB (D= d) Bias Variance MSE

βG= log (2.5)

(−1,log(5)) 0.35 −0.006 0.02 0.02

(−5,log(5)) 0.02 0.005 0.01 0.01

(−1,log(8)) 0.37 0.009 0.03 0.03

(−5,log(8)) 0.04 0.02 0.02 0.02

βG= log (3)

(−1,log(5)) 0.35 0.002 0.02 0.02

(−5,log(5)) 0.02 0.007 0.01 0.01

(−1,log(8)) 0.37 −0.002 0.03 0.03

(−5,log(8)) 0.04 0.004 0.02 0.02

βG= log (5)

(−1,log(5)) 0.36 0.01 0.02 0.02

(−5,log(5)) 0.03 0.006 0.02 0.02

(−1,log(8)) 0.38 −0.02 0.03 0.03

(−5,log(8)) 0.04 −0.003 0.02 0.02

βG= log (8)

(−1,log(5)) 0.37 0.002 0.03 0.03

(−5,log(5)) 0.03 0.03 0.02 0.02

(−1,log(8)) 0.39 −0.008 0.04 0.04

(−5,log(8)) 0.05 0.02 0.03 0.03

Note: We simulated 5,000 datasets of 3,000 cases and 3,000 controls. The
genetic variant is simulated Bernoulli(0.10), the omitted variable is
simulated from Normal(0, 1) and the disease status is simulated based on
model (2) with coefficients β0 =− 1, − 5; βG = log(2.5), log(3), log(5), log(8),
βO = log(5), log(8).
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We next assumed that the full include age, gender,
education ApoE ε4 status, MMSE, and the ratio between
hippocampus volume and whole‐brain volume, plus each
of the genetic variants (Model 3). The reduced model 3A
omits the ratio between brain volumes. On average, we
observed that the difference in the log(OR) estimates of
SNPs obtained in full model 3 versus 3A is 0.006, with
25th percentile −0.001 and 75th percentile that is 0.005,
minimum of −0.35 and maximum of 0.18.

We observed in the following about how the SNPs
rank in the full model 3 and reduced model 3A. Among
the top 10 significant SNPs (ranked by p‐value), 80% of
the SNPs are the same in the full and reduced models,
among the top 30 significant SNPs, 56.67% of the SNPs
are the same and among the top 50 significant SNPs, 58%
of the SNPs are the same. Hence overall, the conclusion
about what SNPs should be carried to the validation set
would be different based on these two models.

TABLE 6 Analyses of robustness of model (6) when the true model includes an additional quadratic term η×G2, but the term is ignored
in the analyses

β0
μ μ

σ

d g

2
prB (D= d) Bias Variance MSE Power

η=−log(2.5)

−1 0.1644 0.2888 −0.7455 0.0022 0.5580 0.9588

−3.5 0.1644 0.0324 −0.7476 0.0018 0.5607 0.9664

η=−log(1.5)

−1 0.1644 0.3008 −0.2331 0.0021 0.0564 1

−3.5 0.1644 0.0347 −0.2524 0.0016 0.0653 1

η= log(1.5)

−1 0.1644 0.3204 0.5669 0.0026 0.0324 1

−3.5 0.1644 0.0412 0.5612 0.0015 0.0317 1

η= log(2.5)

−1 0.1644 0.3313 1.0812 0.0032 1.1723 1

−3.5 0.1644 0.0482 1.0858 0.0016 1.1807 1

Note: The approximation to the bias, rate of the disease in the population prB (D=d), empirical bias, variance, and mean squared error (MSE) of the estimates
obtained from the reduced model. We simulated 5,000 datasets with 3,000 cases and 3,000 controls. We simulated genotype from Bernoulli(0.1) and the omitted
variable from Normal(0, 1), then assumed and η =− log(2.5), − log(1.5), log(1.5), log(2.5).

TABLE 7 Evaluation of robustness of model (1) when the true
model includes an additional interaction term η×G×O

β0 prB (D= d) Bias Variance MSE

η=−log(3)

−1 0.3902 0.2970 0.0399 0.1281

−5 0.0391 −1.0881 0.0138 1.1978

η=−log(1.5)

−1 0.3867 0.0898 0.0398 0.0479

−5 0.0430 −0.4126 0.0187 0.1889

η= log(1.5)

−1 0.3830 −0.1142 0.0483 0.0614

−5 0.0485 0.3188 0.0419 0.1436

η= log(3)

−1 0.3809 −0.2830 0.0544 0.1345

−5 0.0527 0.8983 0.0536 0.8605

Note: Shown are bias, variance, and mean squared error (MSE) of the
estimates for the genetic effect corrected based on the system of Equations
(6), (8), and (9). We simulated 5,000 datasets with 3,000 cases and 3,000
controls. We simulated genotype from Bernoulli(0.1) and the omitted
variable from Normal(0, 1), then assumed βO = βG= log(8), and
η =−log(3), −log(1.5), log(1.5), log(3).

TABLE 8 Analyses of robustness to the correlation between
G and O. We simulated G from Bernoulli(0.1) and O from Normal
(c×G,1), where c= 0.1, 0.25, 0.5, 1

β0 prB (D= d) Bias Variance MSE

c= 0.1

−1 0.3876 −0.1879 0.0205 0.0558

−5 0.0476 −0.1052 0.0086 0.0197

c= 0.25

−1 0.3915 −0.0551 0.0199 0.0230

−5 0.0504 0.0726 0.0120 0.0173

c= 0.5

−1 0.3974 0.0555 0.0129 0.0160

−5 0.0559 0.3567 0.0179 0.1452

c= 1

−1 0.4066 −0.1051 0.0068 0.0178

−5 0.0694 0.7819 0.0432 0.6546

Note: Shown are bias, variance, and mean squared error (MSE) of the
estimates for the genetic effect estimates corrected based on the system of
Equations (6), (8), and (9). We simulated 5,000 datasets with 3,000 cases and
3,000 controls. We assumed β0 =− 1, − 5 and βO = βG = log(8).
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We also note that for all the models the distribution of
p‐values across all SNPs did not differ significantly from
Uniform(0,1), that is p‐values for Kolmogorov‐Smirnov
test are >.05.

2.4.2 | Alzheimer's disease genetics
consortium

The set consists of 2,794 cases and 667 controls (Set 1),
where subsets contained data on age, sex, education,
ApoE ε4 status (Set 2). We mapped the genetic variants to
a set serving innate immune system that are relevant
to AD pathophysiology (Lobach, Kim, Alekseyenko,
Lobach, & Zhang, 2019). After processing, the set
contains 157 SNPs. The average (SD) age of cases is
70.78 (8.82), and 75.19 (8.27) in controls, p< .001. The
average (SD) education of cases is 14.08 (3.38), and 15.93
(2.72) in controls, p< .001, 1,005 (48.9%) of cases are
men, 109 (32.8%) of controls are men, p< .001. A total of
1,327 (64.6%) of cases are ApoE ε4 carriers and 96 (28.9%)
of controls are ApoE ε4, p< .001. The data set and
analyses are described in extensive detail in Web‐based
Supporting Information Materials Section C.

We first assessed estimates in the full and reduced
models based on a subset of data that includes age, sex,
education, ApoE ε4. We observed that estimates of SNPs
differed between the full (age, sex, education, ApoE ε4,
SNP) and reduced models (omits age) by on average 0.01,
25th percentile =−0.02, 75th percentile = 0.04, minimum
of 0.17 and maximum of 0.58.

We also note that for all the models the distribution of
p‐values across all SNPs did not differ significantly from
Uniform(0,1), that is p‐values for Kolmogorov‐Smirnov
test are >.05.

We are next interested in asses the degree and
directionality to which estimates of ApoE ε4 status change
with the omission of age, MMSE, education, hippocampal
volume and the ratio of the hippocampal volume to the
whole brain volume. We, therefore, consider the set of
2,794 cases and 667 controls. We first estimate γε4 from a
univariable model to be 0.16 (SE= 0.01), p< .001. We next
learn the conditional distributions [O|D= d, ε4] of each of
the omitted variables from the ADNI data set, where we
define the set of cases to be the set with diagnosis
dementia and the set of controls to be the set with a
diagnosis of cognitively normal. Then we apply the
relationship (6) to estimate the difference in the estimates
due to omitting the variable as

μ μ

σ

d g

2
. As the result, we

estimate that omission of age decreases the log(OR)
for ApoE ε4 status by 0.10, omission of MMSE increases
the estimate by 0.10, omission of education increases the
estimate by 0.04, omission of hippocampal brain volume

increases the estimate by 0.06, and omission of the ratio
between hippocampal brain volume and whole‐brain
volume increases the estimate by 0.06.

We next assessed how the coefficient for ApoE ε4
status changes when MMSE is omitted from the model
using the system of Equations (6), (8), and (9). From the
literature, we assumed that MMSE is distributed nor-
mally with mean 27 and standard deviation of 1.8;
frequency of the disease in the population that is 10% and
OR for MMSE that is 0.8 (95% CI: 0.55–1.1). In the
reduced model the log(OR) for ApoE ε4 status is 1.5
(SE= 0.13), p< .001. Using the system of Equations (6),
(8), and (9) we arrived at the log(OR) estimate that varied
between 1.45 and 1.79 for various settings of the initial
values that we considered.

3 | DISCUSSION

In the genetic association studies, we interested to
accurately estimate either the parameters or the order
of the magnitude of the parameters, because the
estimates would determine our understanding about the
underlying pathophysiologic mechanisms, risk prediction
and can lead to the estimates of heritability, population
attributable risk to the genetics, and so forth. Massive
amounts of genetic data available in various databases
can be utilized to estimate the genetic associations. Yet,
the set of nongenetic variables is often brief.

We show that omitting a continuous variable
associated with the disease status can result in
substantial bias of parameter estimates in either direc-
tion. We derived two possible approaches to under-
standing the bias. The first is explicit and is based on
knowing O D d G g[ | = , = ]. The second is numerical
and requires knowing the estimates from a univariable
model with the omitted variable (8) and knowing the
rate of the disease in the population as well as the
distribution of the omitted variable in the population.
The two approaches that we developed differ in
their assumptions. One assumes a Normal distribution
for the conditional density of the omitted variable
O D d G g[ | = , = ], that is assumes that the distribution
of the omitted variable is a mixture of normals. The
second in the system of equations assume that the
distribution of the omitted variable is normal and that
the genetic variables and the omitted variable are
independent.

Both of the approaches that we considered require
knowing the set of variables in the full (true) model. In the
analyses of Alzheimer's disease studies, we assumed various
models to be the true (full) models and based on these
assumptions assessed the directionality and magnitude of
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bias. Overall, the main contribution of our work is the
justification that omitting a continuous variable from the
logistic regression model can result in bias in either direction.

In some settings, it is of interest to correctly estimate
the order of the magnitude of the genetic effects to be
able to rank the genetic markers according to the
strength of their association. In these settings, if the bias
affects the estimates proportionally, then the bias would
not change the ordering of the genetic effect estimates.

We found that if the genetic variable and the omitted
variable are independent conditionally on the disease
status, then omitting the variable does not result in bias
of the genetic effects. This assumption is not equivalent
to independence between the genotype and the omitted
variable in the population.

The arguments that we've developed are based on the
logistic link model and normality of the omitted variable.
These derivations do not naturally extend to other link
functions and other forms of the omitted variable.

Pirinen, Donnelly, and Spencer (1993) showed that for
rare diseases inclusion of the key covariates can reduce
power, while for common diseases inclusion of the key
covariates can increase power. Our findings are similar in
that the bias can either reduce or increase the magnitude
of the effect. Specifically, if the omitted variable is
normally distributed with OD d G g[ = , = ]= Normal
(μ0 + μg × g+ μd × d, σ2) then the bias is a function
of μg, μd, and σ2. Based on this relationship we also see
that a rare disease is not immune to the bias.
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